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Abstract A practical cross-hot-wire calibration and data

reduction methodology for instantaneous measurements of

mass flux and flow angle is developed for two dimensional

subsonic compressible flows. Historically, data reduction

for flow conditions of 0.4 \ M \ 1.2 is regarded as prob-

lematic, even in the simplified case of flow normal

mounted wires. Thus, in comparison with the incom-

pressible and supersonic conditions, the literature

addressing these flow regimes is quite limited. The present

study addresses this void by relating the wire voltages to

flow conditions through renormalized, Mach and over-

heating independent, nondimensional quantities. Therefore,

a short and robust calibration can be performed in an

unheated free jet facility with applicability toward a broad

range of planar flow conditions. This disposes the need for

typical closed loop calibration wind tunnels which vary

flow velocity, density and temperature independently to

parameterize the voltage dependency in a purely empirical

manner.

List of symbols

A Area

a0, a1 Resistance temperature coefficients (Eq. 17)

dw Wire diameter

Eb Bridge voltage

Ew Wire voltage

Gr Grashof number

k Thermal conductivity

Kn Knudsen number M=Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5qgp
p

la Active wire length

lt Total wire length

m ð1þ ðc� 1Þ=2M2Þ�1

M Mach number

Nu Nusselt number

P Pressure

Pr Prandtl number

q Convective heat transfer rate

Re Reynolds number

Rg Gas constant

Rl Lead’s resistance

Rt Bridge top resistance

RTu Correlation coefficient between fluctuations in

static temperature and velocity

Rw Wire resistance

Sa Angular sensitivity

STo Total temperature sensitivity

Su Velocity sensitivity

Sq Density sensitivity

T Temperature

Tr Adiabatic wire temperature

Tw Wire temperature

u Velocity (magnitude)

Greek

u Correction factor (Eq. 18)

c Gas specific heat ratio

h Overheat ratio, Tw/T0

b Pitch angle

a Yaw angle

swr Overheating parameter, (Tw - Tr)/Tr

g Recovery factor, Tr/T0

l Dynamic viscosity

q Density
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Abbreviations

CCA Constant current anemometry

CTA Constant temperature anemometry

CVA Constant voltage anemometry

HWA Hot-wire anemometry

rms, nrms Non-normalized and local mean-normalized

‘‘root mean squared’’

Subscripts

0 Total conditions

1, 2 Wire numbers

corr Corrected

eff Effective

ins Instantaneous

ref Reference

s Static conditions

Special symbols

()0 Fluctuating quantity, for example u0 ¼ u� u

ðÞ Time averaged quantity

1 Introduction

Historically, one of the principal means to measure

instantaneous turbulent flow quantities at high frequency is

hot-wire anemometry (HWA), a technique which relates

heated thin wire convection to the consumed electrical

power. There are three types of control circuits feeding

electrical current to the wire, the two common modes being

constant current (CCA) and constant temperature (CTA)

(Brunn 1995), whereas the third developing type is the

constant voltage (CVA) (Kegerise and Spina 2000). For the

entire subsonic and transonic flow range, due to its well-

established technology, reliability and ease of use, CTA is

the standard control unit, a wheatstone circuit where the

exposed sensory element constitutes a leg of the bridge.

The wire temperature, and equivalently resistance, is fixed

at a value higher than the surrounding fluid (overheating)

by a fast response feedback amplifier, which corrects the

bridge voltage unbalance by modifying the circuit top

voltage. Therefore, by maintaining a constant wire resis-

tance with respect to the other internal arms of the bridge,

CTA eliminates thermal inertia issues (Brunn 1995), and

thus, the wire heat transfer can be directly related to the

bridge top voltage.

1.1 Heat transfer over heated thin wires

In general, heat transfer from heated thin wires in high-

speed flows is a complex phenomenon depending on var-

ious parameters such as wire temperature and geometry,

flow velocity, density and temperature. In low-speed

applications, compressibility effects can be ignored and

well-known simplified relationships, such as King’s Law,

can be used to relate flow velocity to the bridge voltage,

possibly in conjunction with temperature correction meth-

ods (Brunn 1995). However, in the presence of compress-

ibility effects, in addition to velocity, density and total

temperature may also fluctuate significantly, coupling the

relations. Furthermore, in subsonic and transonic flows, the

heat transfer is strongly dependent on Mach number,

despite being negligible for M [ 1.4 (Stainback and

Nagabushana 1993). Such difficulties resulted in lack of

reliable measurements within this regime until the late

1970 s.

In high subsonic and transonic flows, one approach to

quantify the voltage dependency of the hot-wire signal is to

assume a functional dependency of Eb ¼ f ðq; u; T0Þ for a

given probe and wire temperature, and empirical curve-

fitting these variables by multiregression methods. A

technique more physical in nature is to determine the

sensitivity to various nondimensional parameters, which

also comprises the bases of the presented investigation.

In the most general sense, the convective heat transfer

from the wire to the gas can be expressed in terms of

Nusselt number (Morkovin 1956), typically defined as,

Nu ¼ q

plakðTw � gT0Þ
ð1Þ

where la and g are active wire length and recovery factor,

respectively. A Buckingham-Pi analysis of steady heat

transfer from heated thin wires yields to Nusselt number

dependency on free stream Reynolds, Prandtl, Mach, and

Grashof numbers, in addition to yaw angle (a), pitch angle

(b), and wire length-to-diameter ratio. For a more complete

functional relationship to incorporate the effects of the

momentum/thermal boundary layers around the cylinder,

the overheating dependency should also be included

(Stainback and Nagabushana 1993), resulting in:

Nu ¼ f Re;Pr;M;Gr; swr; a; b; la=dw

� �

ð2Þ

where Reynolds number is defined as,

Re ¼ qudw

l
: ð3Þ

In addition, there is a strong Knudsen number influence on

heat transfer due to small wire diameters in combination

with high velocities and/or low densities, which may cause

a deviation from the continuum flow (Kn [ 0.01). Due to

this kind of gas rarefaction effects, considering Kn ¼
ðqgp=2Þ0:5M=Re (Brunn 1995), the Mach number depen-

dency of the Nusselt number has been observed to extend

far below the typical incompressibility limit of Ma * 0.3,

even to values as low as 0.05 (Spangenberg 1955).
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For a given probe geometry (la/dw), in a planar flow field

(b) of a specific gas (Pr), with negligible natural convec-

tion (for Re [ Gr0.3), and overheating dependency (Dh
effect negligible for ‘‘moderate’’ changes of total temper-

ature in CTA mode (Dewey 1965), as will be addressed in

Sects. 2.4 and 2.5), Eq. 2 can be simplified to:

Nu ¼ f ðRe;M; aÞ: ð4Þ

Similarly, due to imperfect stagnation of flow over the

wire, it has been observed (Brunn 1995) that the recovery

factor of the wire (g) is also a function of:

g ¼ f ðRe;M; aÞ: ð5Þ

There are few compressible flow studies that quantify the

functional dependencies of Nu and g on their respective

independent variables, while the relationships are empiri-

cally based (Dewey 1965; Behrens 1971).

1.2 Compressible flow turbulence measurements

Having considered the more generalized problem of flow

over heated thin wires, the historic adaptation of this theory

to hot-wire anemometry has been investigated in literature.

Pioneering work on application of one-dimensional flow

normal hot-wire methods for supersonic flows were con-

ducted by Kovasznay (1950, 1953) and Morkovin (1956)

for CCA operation. These methods are based on a sensi-

tivity analysis assuming small perturbations, where the

percent bridge voltage variation is decomposed to percent

fluctuations in density, velocity and total temperature:

E0b
Eb

¼ Sq
q0

q
þ Su

u0

u
þ ST0

T 00
T0

ð6Þ

where Sq, Su, and STo are sensitivity to density, velocity and

total temperature respectively; defined as:

Sqðq; u; T0Þ ¼
o log Eb

o log q

�

�

�

�

u¼const:;T0¼const:

ð7aÞ

Suðq; u;T0Þ ¼
o log Eb

o log u

�

�

�

�

q¼const:;T0¼const:

ð7bÞ

ST0
ðq; u; T0Þ ¼

o log Eb

o log T0

�

�

�

�

q¼const:;u¼const

ð7cÞ

Following Morkovin’s terminology, using Eqs. 4 and 5, the

CTA sensitivity expressions for a flow normal wire can be

derived by logarithmic differentiation of Eq. 1 (Nagabushana

and Stainback 1992):

Sq ¼
1

2

o log Nu

o log Re
� 1

swr

o log g
o log Re

� �

ð8aÞ

Su ¼ Sq þ
1

2m

o log Nu

o log M
� 1

swr

o log g
o log M

� �

ð8bÞ

ST0
¼ 1

2

"

nt þ 1� mt

o log Nu

o log Re
� h

h� g

þ 1

swr

� 1

2m

o log g
o log M

�

þ mt

o log g
o log Re

�

� 1

2m

o log Nu

o log M

#

ð8cÞ

where nt ¼ o log k=o log T0 and mt ¼ o log l=o log T0. If

necessary, similar sensitivity expressions could also be

derived by using other equivalent functional relationships

such as Nu = f(M, Kn) and g = f(M, Kn), reviewed by

Stainback and Nagabushana (1993).

These sensitivities can either be obtained directly in close

loop wind tunnel facilities by methodically varying one

independent parameter while holding the others constant at

each mean value (Eqs. 7a, 7b, 7c or 8a, 8b, 8c), which is

impractical (direct methods), or mathematically in the pres-

ence of closed form formulations (indirect methods) (Horst-

man and Rose 1975), such as the ones proposed by Dewey

(1965) or Behrens (1971). However, these universal corre-

lations are only valid for infinitely long ideal wires. There-

fore, even in the presence of end-loss corrections, as proposed

by Dewey (1961) and Lord (1974), despite preserving the

trends, it is shown that the wire-specific calibrations provide

more accurate results (Horstman and Rose 1975).

The instantaneous solution of Eq. 6 requires using a

three wire probe, where each wire has sufficiently different

sensitivities to create a nonsingular solution matrix with

known sensitivities (Stainback and Johnson 1983; Jones

et al. 1989). However, this kind of instantaneous solution of

fluctuations was questioned by Walker et al. (1988), who

concluded that although the instantaneous wire voltages

correlate well, minute errors in signals cause large errors on

the resulting mass-flux and total temperature fluctuations.

Nevertheless, the concentration of most prior literature

was toward obtaining time averaged turbulent quantities

rather than their instantaneous values. Therefore, Eq. 6 is

typically modified to provide the mean-squared sensitivity

equation for flow normal mounted wires:

Re
E02b

Eb

� 	2
¼ S2

q
q02

q2

" #

þ S2
u

u02

u2

" #

þ S2
T0

T 020

T0

� 	2

" #

þ 2SuST0

u0T 00
uT0

" #

þ 2SqST0

q0T 00
qT0

" #

þ 2SqSu

q0u0

qu


 �

: ð9Þ

Kovasznay (1950) observed that sensitivities, although

weak, are a function of wire temperature and thus overheat;

hence, it is possible to solve Eq. 9 by varying the overheat
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ratio, assuming that statistical flow properties remain

constant. More specifically, by means of a single wire

with at least six different overheat ratios, using Eq. 9 with

predetermined sensitivities, the six unknowns can be

computed, ðq02
.

q2Þ; ðu02
.

u2Þ; ðT 020

.

T0
2Þ; ðu0T 00

�

uT0Þ;

ðq0T 00
�

qT0Þ and ðq0u0
�

quÞ: However, in practice, this is

almost impossible because even very small errors in

obtaining the sensitivities cause an ill conditioning of the

matrix (Stainback and Nagabushana 1995).

Alternatively, it has been shown that if the wire normal

Mach number component is greater than 1.2, then the heat

transfer is independent of the Mach number (Morkovin

1956), therefore o=oM ¼ 0 in Eqs. 8a, 8b, 8c, resulting in

an equality between the density and velocity sensitivities

(Su = Sq). Therefore, Eq. 6 becomes:

E0b
Eb

¼ Squ

qu0

qu
þ ST0

T 00
T0

ð10Þ

which is only dependent upon mass-flux and total

temperature fluctuations. Through mean squaring of the

quantities, the equation can be reformatted to provide:

E02b

Eb

� 	2
¼ S2

qu

quð Þ02

quð Þ2

" #

þ S2
T0

T 020

T0

� 	2

" #

þ 2SquST0

quð Þ0T 00
quð ÞT0

" #

:

ð11Þ

By these reduced three unknowns, Kovasznay (1953)

developed the ‘fluctuation diagram technique’, a graphical

method, to solve Eq. 11. Although three different overheat

ratios are sufficient to solve this equation, accuracy can be

improved by using more overheat levels by rapid scanning.

In the face of prior unsuccessful attempts at extending

these techniques to CTA operation, Smits et al. (1983)

associate the cause of implementation inadequacy to the

decrease in system linearity, stability and frequency

response with the reducing overheat. Therefore, CTA is

only suitable for high (and single) overheat ratio operations

where STo is low and Su and Sq (or Squ) are high. Instead, in

CTA operation, if total temperature fluctuations are small

(e.g., in adiabatic flows) or if the wire is insensitive to such

fluctuations [true for h[ 2.5 (Horstman and Rose 1975;

Mikulla and Horstman 1975)], then the temperature terms

in Eqs. 9 and 11 vanish, greatly simplifying the equations.

However, at compressible subsonic and transonic flow

regimes, due to the strong Mach number dependency, the

equality between the density and velocity sensitivities

vanishes (Su = Sq); thus, the simplification from Eqs. 9 to

11 is inapplicable. In literature, there exists a large incon-

sistency regarding the significance of this inequality. For

example, some experimental studies (Horstman and Rose

1975; Johnson and Rose 1976; Rose and McDaid 1977;

Rong et al. 1985) indicated that the Mach number effect in

these regimes can be negligible if overheating h[ 1.5 and

Re [ 20. Therefore, the density sensitivity is very close to

the velocity sensitivity. This is contrasted by Nagabushana

and Stainback (1992), Stainback and Johnson (1983), Jones

et al. (1989), who clearly state strong Mach number effects,

therefore Su = Sq. In summary, most investigators had to

assume Su = Sq to obtain the fluctuation information from

their respective data sets (Motallebi 1994).

If mass flux can be calculated accurately in a flow

environment absent of significant total temperature fluctu-

ations (isentropic), then two distinct types of fluctuations

are expected: Field of random sound waves that are irro-

tational (sound mode) and field of incompressible but

rotational turbulence (vorticity mode) (Kovasznay 1950).

For true sound waves, if the turbulence intensity is low,

then the contribution of velocity perturbations to Mach

number is insignificant. Hence, across the sound wave, the

compressibility effects (pressure fluctuations) are of second

order, in comparison with velocity (Kovasznay 1950).

Under these assumptions, the rms density and velocity

fluctuations can be estimated analytically from the known

rms mass flux:

u02

u2
¼ quð Þ02

qu2
1� 2RTu c� 1ð ÞM2 þ c� 1ð Þ2M4
h i�1

ð12aÞ

q02

q2
¼ c� 1ð Þ2M4 u02

u2
ð12bÞ

where RTu is shown to be almost constant and equal to

-0.8 in many transonic environments (Motallebi 1994). A

more complete description of RTu dependence on flow

conditions can be found in Stainback and Johnson (1983).

Furthermore, analogous analytic expressions that include

total temperature fluctuations are described in Motallebi

(1994).

Finally, to generalize the discussed methodologies in a

planar flow field, a probe with one or more inclined wires

must be used. In contrast to normal wires, inclined wires

have considerable angular sensitivity, and thus, Eq. 6 can

be modified to include this effect (Motallebi 1994):

E0b
Eb

¼ Sq
q0

q
þ Su

u0

u
þ ST0

T 00
T0

þ Saa
0 ð13Þ

where Sa is the angular sensitivity defined as qlogEb/qa or

alternatively:

Sa ¼
1

2

1

swr

o log g
oa

� o log Nu

oa

� �

: ð14Þ

In general, the added complexity due to the introduced

angular dependency has encumbered accurate multidi-

mensional measurements using conventional sensitivity

analysis techniques, and results are reported to be inferior

to that of a normal wire (Motallebi 1994).
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2 Proposed methodology

The ultimate objective of the current research effort is to

extend the basic low-speed cross-hot-wire calibration pro-

cedures (voltage-velocity-angle correlations) into the

compressible subsonic and transonic flow regimes. This is

mainly established through adaptations of normalized

nondimensional parameters, which characterize the depen-

dency of Nusselt number on Reynolds and Mach numbers.

Universal empirical correlations for infinitely long wires are

often used to predict qualitative trends; the present work,

however, outlines a method to treat quantitative data by

reducing its dependencies. Consequentially, so long as the

mean (or if possible instantaneous) total temperature and

local mean Mach number are supplied along with the wire

voltages, the instantaneous mass flux and flow angle can be

obtained via probe-specific calibrations consisting of a

single compressibility corrected Nusselt–Reynolds rela-

tionship and a directional calibration curve. Although the

technique is only verified within the compressible subsonic

range (0.3 \ M \ 0.9), the methodology may also hold true

within the transonic regime (0.9 \ M \ 1.2) as the func-

tional dependencies are similar.

Among the main contributions of the article, this proce-

dure enables the time accurate calculation of mass flux and

flow angle ‘‘directly from calibration’’. This is evident con-

sidering the instantaneous wire voltages are evaluated point-

by-point on the calibration curves, absent of sensitivity-based

analysis (Eq. 6). Moreover, if desired, under certain assump-

tions/conditions, the percent rms fluctuations of density and

velocity may be estimated using Eqs. 12a, 12b from the already

computed mass flux. In addition, as an addendum to the pro-

posed methodology, sensitivities at local flow conditions can be

calculated (Eqs. 8a, 8b, 8c) without additional calibration data;

and the classical ‘‘sensitivity-based’’ fluctuation measurements

can be performed to obtain instantaneous velocity and density

independently.

2.1 Instrumentation

The cross-hot-wire is a probe designed in-house with short

prongs, 2.5 and 1 mm in length, which also prevents prong

vibrations during high-speed operation (Brunn 1995). The

angle between the two wires is 110�, with a lateral distance

on the order of 0.5 mm. The wires are 5 and 9 lm in

diameter and made of platinum-coated tungsten, which

have an optimum frequency response up to *20

and *70 kHz, respectively, spanning across a total length

of about 2.5 mm, with an active length on the order of

1 mm, Fig. 1. The corresponding la/dw ratios are accept-

able with regard to conduction end loss, frequency

response, spatial resolution and strength (Li 2001). Before

calibration, the wires are pre-stressed and pre-heated at the

highest expected dynamic pressure and nominal wire

temperature, to ensure that no additional strain is imposed

that could alter the wire resistances during operation. In the

course of this process, the wires are also checked for

vibrations, which could generate detrimental strain gauging

effects (Stainback and Nagabushana 1993). The anemom-

eter system is a Dantec Streamline 90N10 Frame, which

includes a controller circuit and supports up to six 90C10

CTA modules. Each CTA module has its own program-

mable signal conditioner capable of amplification, offset-

ting and analog low pass filtering, in this case imposed at

30 kHz. The system is initiated and operated by Dantec

StreamWare� software. The frequency response is opti-

mized by a square wave test at the highest observed

velocity by adjusting the servo loop amplifier gain, filter

cutoff and settings of the coils.

From the dimensional analysis for the heat transfer

problem over a heated constant temperature wire under

convection, the nondimensional parameters simplify to

Reynolds number, Nusselt number and the Mach number,

as presented in Eq. 4. If the flow field static and total

pressures, in addition to the total temperature, are known,

then it is possible to correlate the voltage across the wire

with the fluid properties; even a simple open jet facility can

satisfy these requirements. An open jet with contraction

ratio of 25, exiting to atmospheric conditions, served as the

calibration facility for the cross-hot-wire probe attached to

a yawing mechanism. Flow of air is ensured through

common 7 bar shop air supplied optionally through an

electric air heater upstream. During calibration and verifi-

cation procedures, exit total and static pressures are mea-

sured via pressure taps located prior to the area reduction

and connected to a Validyne DP10 differential pressure

transducer and a reference pressure transducer, Druck DPI

150 open to atmosphere. The total temperature is measured

by two K-type thermocouples located within the nozzle.

The acquired data is discretized by a 16bit NI-6251 data

acquisition card with a maximum sampling frequency of

Fig. 1 Schematic of the cross-hot-wire probe
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1.25 MHz. The facility and the measurement chain are

sketched in Fig. 2.

2.2 Computation of nondimensional parameters

The Nusselt number is calculated from Eq. 1, where the

convective heat transfer rate (q) is obtained from the con-

sumed power associated with wire Joule heating. For

Re [ 20, the conduction end losses diminish to relatively

negligible amounts (Li 2001), in addition to being insig-

nificant for wire-specific calibration procedures and thus:

q ¼ E2
w

Rw

: ð15Þ

As the output voltage of a hot-wire anemometer is the

bridge voltage (Eb), the related wire voltage (Ew) can be

computed through the known resistance within the circuitry

and the Nusselt number in terms of the bridge voltage can

be written as (Nagabushana and Stainback 1992):

Nu ¼ E2
b

kðTw � gT0Þ
Rw

p la Rt þ Rl þ Rwð Þ2

 !

ð16Þ

where all resistances are constant for CTA operation. The

precise values of those resistances are not strictly required

since they only cause a fixed bias shift in the calculated

Nusselt Number. In Eq. 16, the recovery factor (g) term is

obtained from empirical correlations (Dewey 1965) and

thermal conductivity is computed using the 0.7 power law

(George et al. 1989).

Mach number and static temperature (therefore velocity)

are calculated from the isentropic flow relations when total

pressure and temperature and the static pressure are known,

whereas Reynolds number is calculated from Eq. 3 with

density obtained from the ideal gas relation of free stream

static quantities and the dynamic viscosity calculated using

Sutherland’s relation.

The selection of an appropriate evaluation temperature

in computation of thermal conductivity and viscosity may

have a significant effect on the respective calibration curve.

In low-speed flows, the average conditions can be well

represented by the film temperature defined as the average

of the wire and total temperatures (George et al. 1989).

However, in high subsonic and transonic speeds, the

boundary layer around the wire becomes thinner and the

total temperature itself may better represent the average

conditions (Dewey 1965); hence, this definition is also

implemented in the present study.

2.3 Determination of the wire temperature

During the computation of Nusselt number, using Eq. 16,

the only remaining unknown is the mean wire temperature,

which is merely a constant value in CTA mode. One of the

possible ways to determine the wire temperature is using

the resistance–temperature law:

R

Rref

¼ 1þ a0ðTw � TrefÞ þ a1ðTw � TrefÞ2: ð17Þ

Although commonly employed via an oven, accurate

knowledge of the coefficients a0 and a1 does not typically

exist and the wire temperature computed from this relation

may not necessarily be consistent with the imposed Nusselt

number defining conditions.

A more precise way of determining the wire tempera-

ture is through widespread variation of a least square

fitted free parameter (George et al. 1989; Yasa et al.

2005). Considering the negligible Mach number depen-

dency of Nusselt number at low speeds in Eq. 4, for a

given flow angle, the correct wire temperature must col-

lapse a population of Re-Nu data into a single curve. By

calculating the Nusselt number for a range of presumed

wire temperatures, the best data cloud collapsing value

determines the effective wire temperature. Specifically, the

level of data scatter is quantified by the R2 value of a

fitted 4th order polynomial, recommended by George,

et al. (1989), Fig. 3.

To prevent large errors, a priori determined wire tem-

perature, and thus resistance, must be kept constant

throughout the calibration and proceeding measurements.

This can only be satisfied by keeping the hot resistance, not

overheat ratio, constant. Furthermore, to prevent detri-

mental effects of aging due to oxidation of the wire

material, where the wire resistance temperature relation-

ship is amended, the mean wire temperature should be kept

below 525 K for platinum-coated tungsten wires (Brunn

1995). It has been observed that through consecutive ini-

tializations with varying initial ambient temperatures, up to

330 K, and at different operational life spans of the wire,

the computed wire temperature remained the same within

Fig. 2 Schematic of the calibration facility
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2 K. Therefore, although commonly desirable, the need for

in situ calibration is eliminated.

2.4 Mass-flux calibration

Once the wire temperature is known, the mass-flux cali-

bration at reference angular position (the probe axis,

Fig. 1) can be performed in the operational velocity range

(high subsonic) by recording total pressure and tempera-

ture, static pressure and wire voltages, and thus calculating

local Nu, Re and M. In an effort to eliminate the Mach

number dependency of the measured Nusselt number,

Dewey’s empirical correlation for flow normal infinitely

long wires (Dewey 1965) can be partly adapted to com-

pensate for the compressibility effects. By rearranging the

terms in Dewey (1965):

NuðRe;1Þ ¼ NuðRe;MÞ
uðRe;MÞ ð18Þ

where Nu(Re, M) is the Nusselt number, Nu(Re, ?) is the

Mach independent Nusselt number obtained from

supersonic flow correlations and u(Re, M) is the term

which quantifies deviation from supersonic relations. u is

given by:

uðRe;MÞ ¼ 1þ AðMÞ 1:834� 1:634
Re1:109

2:765þ Re1:109

� �
 �

x 1þ 0:3� 0:0650

M1:670

� �

Re

4þ Re

� �
 �

ð19aÞ

AðMÞ ¼ 0:6039

M
þ 0:5701

M1:222

1þM1:222

� �1:569

�1

" #

: ð19bÞ

By using this correction term u, the Mach effect on

Nusselt number can be diminished, Eq. 18, and thus any

real wire heat–momentum transfer relationship can be

decoupled from compressibility effects if the local mean

Mach number is known. Since 5 % deviation of Mach

number merely corresponds to 1 % error in the resultant

mass flux, derived from a typical calibration curve (Fig. 4),

the Mach number fluctuations can be considered insig-

nificant in most measurement environments.

On the other hand, Dewey proposed the empirical cor-

relations for flow normal wires; hence, applicability to

slanted wires is ambiguous due to the angular effect.

Within the scope of this investigation, since the Mach

number is utilized to purely compensate for compressibility

effects and the major flow information is propagated by the

Reynolds effect, it is concluded that the optimum choice is

to use wire normal Reynolds number and flow Mach

number in u factor computation.

As a result, the calibration is conducted for Re versus

Nucorr, which is a Mach independent single curve, the

validity of which was investigated for 5 and 9 lm wires,

at several fixed overheat ratios and a wide range of free

stream total temperatures and velocities. A typical tem-

perature and velocity variant data set is presented in

Fig. 4 (left), where the charted Re–Nu relationship yields

to a scatter of the data, as large as 10 % from the local

mean. In contrast, with the Mach corrected Nusselt rela-

tion, Fig. 4 (right), the scatter in the data is eliminated.

Consequently, the correction term u is examined for a

broad range 20 \ Redw \ 200, 0.3 \ M \ 0.9, and a flow

total temperature variation driven overheat shift of

Dh = 0.3 at h[ 1.3. It is demonstrated that the term

eliminates the Mach number dependency, independent of

overheating, within ±0.4%. The resultant calibration

curve successfully represents the wire heat transfer char-

acteristics, demonstrating the independence from flow

conditions; hence, only a cold calibration is sufficient

to establish the wire-specific heat–momentum transfer

relation.

During measurements, since this u factor includes the

Reynolds and Mach numbers, despite the Reynolds number

being the dependent variable in the calibration curve, an

iterative procedure is deemed necessary.

2.5 Angular calibration

The angular response of the cross-hot-wires is investigated

in the same flow range, 20 \ Redw \ 200, 0.3 \ M \ 0.9,

Dh = 0.3 for h[ 1.3, with yaw variation of -30 \
a\ 30. To deduce the flow angle information from the two

recorded wire voltages, the effective Reynolds number, the

one that yields to the same Nusselt number if the probe was

aligned at the reference position, is calculated for each of

the wires using their respective mass-flux calibration

curves (Figs. 4, 5).

Fig. 3 Determination of wire temperature by flow condition variation

via Re–Nu relationship
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The relation between the actual and effective Reynolds

numbers can be represented by a function, which is

obtained during the angular calibration, Fig. 6:

Reeff ¼ Re:f ðaÞ: ð20Þ

In the most general sense, f(a) could be a function of

Reynolds and Mach numbers. However, as presented in

Fig. 6, in the scope of the present investigation, no

systematic angular response variation is observed based

on Reynolds or Mach dependency, indicated by the single

angular calibration curve characterizing the behavior at all

flow conditions, in agreement with Motallebi (1994) and

Smits and Muck (1984). Furthermore, lack of a spread in

data for various flow temperatures supports the negligible

overheating (h) dependence assumption for moderate

changes in T0, * 40 K. Thus, a curve fit, in this case a

4th order polynomial, can represent the angular response

for all Mach and Reynolds numbers. As a result, during

measurements, the two unknowns, Reynolds number and

flow angle, can be acquired by the 2 9 2 system of

equations constituted of Eq. 20 for each wire, yielding to:

a ¼ F
Reeff1

Reeff2

� �

: ð21Þ

By this formulation, the ratio of the effective Reynolds

numbers of the two wires directly provides the flow angle,

Fig. 6.

It may be worthwhile to note that yawing the probe

causes the flow to become more perpendicular to one of the

wires; hence, the effective Reynolds number becomes

larger than the actual Reynolds number for that wire. At the

high extremity of the mass-flux calibration curve, Fig. 4,

the greater than actual/real effective Reynolds number can

go beyond the limits of the mass-flux calibration curve.

Although impractical in high-speed flows, the usual prac-

tice in low-speed applications is by constructing the cali-

bration curve up to a velocity, which is sufficiently higher

than the maximum expected value. In the present meth-

odology, considering the Mach and Reynolds indepen-

dence of the angular calibration curve, superficial non-error

producing Reeff–Nu points are generated outside the range

of the original mass-flux calibration at both extremities to

satisfy these requirements.

Concisely, the primary benefit of the effective Reynolds

approach is the elimination of full multidimensional map-

pings of combined Mach, Reynolds and angular response.

The validity of the angular calibration in Fig. 6 is verified

by recovering the calibration data from the fitted solution,

which displayed a low level of scatter, the 95 % confidence

level within ±0.4� and ±0.6 % for a and Re respectively.

2.6 Methodology overview

A brief breakdown of the calibration and experimental data

processing methodology can be found in Fig. 7. Having

determined the wire temperatures initially, by varying the

velocity of a cold jet and recording the HW bridge voltages

at reference probe position along with flow total pressure

Fig. 4 Establishing mach number independent Re–Nu relationship

Fig. 5 Effective Reynolds number on each wire at fixed flow angle

Fig. 6 Angular dependency of hot-wire at various Re and Ma
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and temperature in addition to static pressure, the mass-flux

calibration can be achieved. To be able to characterize the

angular dependency, the same cold jet facility is operated

for different hot-wire yaw angles, recording the flow

quantities at arbitrary conditions due to the Mach and

Reynolds independency of the curves. The obtained cali-

bration maps, characterizing both the mass flux and the

angular response of the cross-hot-wire, are universal for the

given probe in a sense that validity is independent of sur-

rounding flow total temperature and pressure, static pres-

sure, and consequently local Mach number.

Placing the probe in a measurement environment where

entropy (total temperature) fluctuations are not significant,

and recording the two hot-wire voltages, in addition to the

mean local Mach number and total temperature, using the

mass-flux and angular calibrations, the instantaneous pla-

nar flow angle and mass flux may be obtained. If desired, as

a corollary of the proposed methodology, the instantaneous

density and velocity can be computed in cohesion with the

sensitivity analysis, as thoroughly discussed in Chapter 3.

Alternatively, for flow conditions where the sound mode is

dominant (irrotational flow field), and if the turbulence

intensity is low, the instantaneous mass flux and flow angle

can be analytically decomposed into rms density and

velocity fluctuations via Eqs. 12a, 12b.

In conclusion, the provided methodology presents an

accurate, generalized, straightforward pathway for cali-

brating and processing cross-hot-wire signals under com-

pressible subsonic and transonic conditions, in the absence

of added complexities/uncertainties associated with closed

loop wind tunnels and direct methods. Although primarily

geared toward flows with negligible total temperature

fluctuations, the suggested technique can be extended by

utilizing a CCA at low overheat, in conjunction with the

CTA’s, to compensate for high frequency changes in total

temperature via substitution into Eq. 16.

2.6.1 Verification

In an attempt to validate the calibration/processing meth-

odology, a posteriori cross-hot-wire measurements are

conducted in the same calibration jet facility with known

static quantities, Fig. 2. The imposed mean mass flux and

angle are compared with the values computed from the

post-processing procedures, using the calibration curves as

outlined in Fig. 7. Table 1 depicts the low deviation

between the imposed and hot-wire calculated quantities

and reflects the robustness of the methodology for all

operating conditions independent of T0, h, qu, a. The

maximum observed discrepancy among the two different

sources is found to be 0.67 %, 0.5� in mean mass flux and

yaw angle, respectively.

2.7 Uncertainty analysis

Hot-wire measurements are subjected to both random and

systematic sources of errors, such as uncertainties associated

with HW voltage, total/static pressure ratio, total temperature

and calibration curve-fitting errors. The cumulative error can

Fig. 7 Calibration and data processing methodology overview

Table 1 Validation of measurement technique

T0 h qu (kg/m2s) a (�)

Jet HW % Dif Jet HW

292 K 1.67 344.2 341.9 0.67 0 -0.05

290 K 1.68 276.9 276.7 0.09 0 -0.17

292 K 1.67 229.1 229.5 -0.19 0 0.09

315 K 1.55 280.5 278.9 0.55 -20 -19.53

289 K 1.69 313.3 313.1 0.06 20 20.43

Exp Fluids (2012) 53:1073–1085 1081

123



be estimated as the root mean square of the standard

deviation quantities:

DRe ¼ of1ðaÞ
oa

Da

� �2

þe2
cfit1

" #0:5

ð22aÞ

Da ¼ of2ðReeff1=Reeff2Þ
oðReeff1=Reeff2Þ

DðReeff1=Reeff2Þ
� �2

þe2
cfit2

" #0:5

ð22bÞ

DReeff ¼
of ðNu;MÞ

oNu
DNu

� �2

þ of ðNu;MÞ
oM

DM

� �2

þe2
cfit3

" #0:5

ð22cÞ

where ecfit’s are calibration curve-fitting errors and DNu,

DM, D(Reeff1/Reeff2) are computed from uncertainties of

the directly measured quantities, DEb, DT0, D(P0/Ps).

Similarly, the derivatives are obtained by numerically

perturbing the physically measured parameters due to the

complexity associated with the direct mathematical for-

mulations. The uncertainties are presented in the 95 %

confidence level.

This analysis illustrates that the largest uncertainty

contributor is the total temperature measurements where

a ±1 K uncertainty causes an uncertainty of ±1.1� in yaw

angle and ±2 % in mass flux. The curve-fitting errors

result in an uncertainty of ±0.8� in flow angle and ±1.2 %

in mass flux. The smallest contribution is generated by

uncertainties associated with voltage readings and total/

static pressure measurements (therefore the Mach number)

where ±0.25 kPa error in pressure and even ±2 mV error

in voltage (estimated max white noise) cause an uncer-

tainty of ±0.3� in yaw angle and ±0.6 % in mass flux.

Therefore, combinations of these uncertainties cause a

total absolute accuracy error of ±1.4� in yaw angle

and ±2.5 % in mass flux within the 95 % confidence level.

These uncertainties can significantly be reduced if total

temperature is measured more accurately, for example, the

reduction of total temperature error down to ±0.5 K results

in cumulative yaw angle and mass-flux uncertainties

of ±1.2� and ±1.7 %, respectively. For flow normal wire

measurements, mass-flux uncertainty is ±2 % for ±1 K

error and ±1.3 % for ±0.5 K error.

Uncertainty in turbulent fluctuation quantities, such as

mass-flux intensity, can be estimated by assuming that

errors diminish for pure fluctuations and the uncertainty is

mostly propagated from the drift in the mean value.

Therefore, for all nominal mass fluxes, fluctuation intensity

uncertainty is in the order of ±2.56 % for ±1 K total

temperature error. Uncertainty in angle fluctuation is neg-

ligible since it is not a strong function of the mean quan-

tities, considering the locally linear behavior of the angular

response within a mean value change of ±1.4�.

3 Extension to sensitivity analysis

3.1 Calculation of instantaneous density and velocity

Upon this point, the sensitivity-based data reduction tech-

niques have not been utilized; instead, a mass flux and flow

angle calculation method based on direct point-by-point

evaluation of wire voltages on the nondimensional cali-

bration curves was proposed. If the independent temporal

variation in velocity and density is of interest, the con-

ventional sensitivity analysis can be optionally extended to

be used in conjunction with the present calibration scheme.

Using the two inclined wires in a flow where T0 variations

result in low percent fluctuations, rearranging Eq. 13 yields

to:

E0b
Eb

� Saa
0 ¼ Sq

q0

q
þ Su

u0

u
ð23Þ

with Sa, Su, Sq sensitivities computed at a given data point

by Eqs. 8a, 8b, 8c and 14 using mass-flux and angular

calibrations of Figs. 4 and 6. Furthermore, for two wires

with different STo, a function of both wire overheat and

diameter, if the independent computation of instantaneous

mass flux from the each wire, Eq. 20, results in the same

temporal distribution, then assumption of neglecting T0

fluctuations is validated (Smits et al. 1983; Motallebi

1994). Considering the prior known instantaneous angle

variations, the only remaining unknowns are independent

velocity and density perturbation quantities, hence the

solution matrix of this 2 9 2 system.

Figure 8 presents the two raw bridge voltages, in the

presence and absence of the angular term. It is clear that the

voltages are only correlated with the angular compensation.

In the case of cross-hot-wires, since the angular sensitivity

affects the two wires in opposite senses (close to and fur-

ther away from wire normal flow direction), this compen-

sation is demonstrated to be imperative.

3.2 Wire sensitivity analysis

One of the challenges in utilizing sensitivity methods is

acquiring a nonsingular solution matrix, a function of the

wire-to-wire Sq/Su variation. At several overheat ratios (h
ranging from 1.42 to 1.70), the mass-flux-calibration-based

sensitivities are calculated for 9l wires under different flow

conditions, Table 2. Despite large changes in overheating

parameter, the resulting change in density–velocity sensi-

tivity ratio is limited to 8 %; therefore, it is difficult to

make the solution matrix (Eq. 23) well conditioned by

solely varying overheat ratio.

On the other hand, considering Kn dependency of

heat transfer, another possibility is utilizing two wires of

different diameter (Jones et al. 1989) to ensure larger
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variations within the system matrix. Figure 9 depicts the

Sq, Su variation at a range flow conditions, with a cross-hot-

wire formed of 5 and 9 lm diameter wires, indicating a

wire-to-wire change in Sq/Su up to 20 %. This effect of

divergence from matrix singularity is further amplified in

the vicinity of M = 0.6, reasonable considering that the

heat transfer is Mach independent at very low subsonic and

above transonic conditions, forcing a constant Sq/Su ratio of

1. Additionally, Fig. 9 results are found to be in agreement

with Nagabushana and Stainback (1992).

3.3 Experimental verification of the separation

procedure

In an attempt to decouple instantaneous velocity and den-

sity fluctuations in free stream flow conditions, tests are

conducted within the core of a free jet, as well as down-

stream of a 20 blade rotating flow perturbator (typical

in turbomachinery applications), both at M = 0.7 and

Re9lm = 125. For the latter case, the typical bridge voltage

power spectra encountered during measurements can be

found in Fig. 10, indicating the high frequency response of

the probe, limited by the analog filter at 30 kHz, with

distinct peaks at once per revolution, blade passing and its

harmonics.

Figure 11a depicts the directly computed distribution of

(qu)0 and a0 along with sensitivity calculated q0, u0, q0u0

for the measurements conducted at the exit of a jet core.

The mass-flux intensity and a0rms are 0.63 % and 0.56�,

respectively, and there exists a high degree of correlation

among instantaneous mass-flux, velocity and angle fluctu-

ations. Moreover, the instantaneous mass-flux fluctuations

calculated from the two different methods, directly from

calibration (qu)0 and sensitivity-based q0u0, display a high

Table 2 Wire sensitivities at various flow conditions

h Sq Su STo Sq/Su

M = 0.70, Re = 140 1.42 0.280 0.234 -1.10 1.197

1.53 0.268 0.210 -0.77 1.276

1.70 0.277 0.215 -0.60 1.288

M = 0.55, Re = 110 1.42 0.285 0.210 -1.15 1.357

1.53 0.276 0.194 -0.84 1.423

1.70 0.280 0.200 -0.58 1.400

Fig. 8 Angular compensation in sensitivity analysis

Fig. 9 Sensitivity to velocity and density at various flow conditions

Fig. 10 Typical bridge voltage power spectra

Fig. 11 Typical perturbation—Core of a free Jet (a), downstream of

a flow perturbator (b)
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degree of quantitative correlation. In addition, comparing

the analytic decomposition of velocity and density rms

quantities, Eqs. 12a, 12b, with the sensitivity decoupled

values, Eq. 23, the results reveal large similarity,

unrms = 0.61 %, 0.72 % qnrms = 0.14 %, 0.13 %, respec-

tively, in part validating both the proposed technique and

instantaneous density–velocity decoupling. This is encour-

aging considering the sound mode (the principal assumption

of Eqs. 12a, 12b) is expected to be the dominant turbulence

feature in this type of flow environment.

In the case of measurements conducted downstream of

the rotating perturbator application, Fig. 11b, it is clear that

the two instantaneous mass-flux fluctuations, calculated

based on direct and sensitivity analysis methods, still prove

to provide similar behaviors. Interestingly, the density

fluctuations, q0, seem to correlate moderately well with

mass-flux variations. This could be due to the perturbator

generated variations in static pressure sweeping the loca-

tion of the probe in the circumferential direction, yielding a

flow more prone to streamwise compression. On the other

hand, velocity perturbations, u0, indicate a similarity in

trend with flow angle, a0, typical behind rotating pertur-

bators, conceivably an indication of perturbator driven

rotational vorticity field. Quantifying the data in terms of

averaged perturbation quantities, the computed mass-flux

intensity and arms are 1.52 % and 2.53�. The analytic and

sensitivity analysis based computations of rms velocity and

density provide unrms = 1.35, 1.31 % and qnrms = 0.25,

1.36 % respectively. Although the unrms quantities relate

reasonably well, the rms density perturbations seem highly

inconsistent. This may be an artifact of the dominant vor-

ticity mode present downstream of the flow perturbator; the

analytical solution of unrms and qnrms, Eqs. 12a, 12b, is

valid for true sound waves, in the absence of rotational

turbulent structures (Kovasznay 1950), possibly violated in

this circumstance.

4 Conclusions

A novel, practical, and accurate procedure is developed for

conducting high-speed cross-hot-wire calibration and data

reduction, combining wire-specific data with trends observed

for infinitely long wires. Through nondimensionalization of

the physical parameters in the form of Nusselt, Reynolds and

Mach numbers, and via compressibility normalization by

which the Mach independency is established, the mass-flux

calibration yields to a well-collapsed single curve. It has been

demonstrated that calibrations obtained in a cold jet (e.g.,

T0 = 290 K) are valid at measurement environments where

the temperature is elevated (e.g., T0 = 335 K). Angular

response of the probe is investigated by means of effective

Reynolds number concept, and it has shown that a single

angular calibration curve represents the behavior at all flow

conditions. The calibration and measurements are validated

for 20\ Redw \ 200, 0.3 \ M \ 0.9, -30� \ a\ 30� and

Dh = 0.3 at h[ 1.3. Moreover, due to the similarity of

functional relationships, the technique is expected to maintain

its validity within the transonic regime (0.9\ M \ 1.2).

Alternatively, the calibration methodology can also be used

to obtain the wire sensitivities in a reliable, practical manner.

Using the instantaneous angle information obtained from the

proposed methodology, instantaneous density and velocity

fluctuations may be independently computed.

In conclusion, the new data reduction methodology

offers a high-speed calibration scheme over a wide range of

Reynolds and Mach numbers with an effort equivalent to

that of a cross-hot-wire calibration under isothermal low-

speed flows. As nondimensional parameters and widely

accepted correlations are used, there is no need for closed

loop wind tunnels, which vary each flow variable inde-

pendently. Moreover, as the procedure is based on general

heat transfer law, applicability could be extended to CCA

and CVA provided that the wire temperature resistance law

is well quantified.
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