
Michael Palman, Boris Leizeronok and Beni Cukurel*

Comparative study of numerical approaches to
adaptive gas turbine cycle analysis

https://doi.org/10.1515/tjeng-2021-0021
Received June 6, 2021; accepted June 28, 2021;
published online July 9, 2021

Abstract: Significant increase in task complexity for
modern gas-turbine propulsion systems drives the need for
future advanced cycles’ development. Further perfor-
mance improvement can be achieved by increasing the
number of engine controls. However, there is a lack of
cycle analysis tools, suitable for the increased complexity
of such engines. Towards bridging this gap, this work fo-
cuses on the computation time optimization of various
mathematical approaches that could be implemented in
future cycle-solving algorithms. At first, engine model is
described as a set of engine variables and error func-
tions, and is solved as an optimization problem. Then,
the framework is updated to use advanced root-finding
paradigms. Starting with Newton-Raphson, the model is
improved by applying Broyden’s and Miller’s schemes
and implementing solution existence validation. Finally,
algorithms are compared in representative condition using
increasingly complex turbojet and adaptive cycle turbofan
configurations. As evaluation cases become more time
consuming, associated time benefits also improve.

Keywords: adaptive cycle engine; engine modelling; nu-
merical simulations; optimization; root-finding technique
comparison.

Introduction

Modern gas turbine engine designs that are predominantly
based on conventional engine architecture are typically
designed to effectively operate in single flight condition.

However, as the requirements from modern flight plat-
forms reach into operational range with multitude of
characteristic conditions, such as slow-speed loiter and
high-speed cruise, contemporary propulsion systems are
reaching the peak of their performance within current
technological limits. Consequently, the natural evolution
of jet engine technology will lead themarket towards novel
adaptive cycle engine concepts.

This growing interest in adaptive cycle research can
already be observed in the work of gas turbine industry
leaders [1,2] and throughout recent academic studies
[3–6]. As these preliminary studies mostly focus on the
adaptive cycle thermodynamics, the most common
approach is to start the research with numerical simula-
tion of the engine components and the complete cycle.
These studies usually utilize commonly available engine
simulation frameworks and commercial tools. How-
ever, as these codes are generally developed for well-
established aerial and power gas turbine configurations,
which are typically characterized by a small number of
simulation variables, development of new adaptive cycle
engines with numerous control parameters creates
significantly enhanced computational load.

Motivation

In an attempt to alleviate this increasingly challenging
problem, the present effort focuses on the computation
time optimization of various mathematical approaches
that could be implemented in future advanced cycle-
solving algorithms. Drawing inspiration from previously
developed enhanced numerical methods, this paper com-
pares the performance of representative solvers for a set
of increasingly complex engine architectures. For each
configuration, the computational efficiency of each solver
is depicted using typical flight conditions. The outcomes of
this work are intended to provide basis for future devel-
opment of optimized modal agile simulation tools for
advanced thermodynamic cycles’ analysis. According to
the authors’ best knowledge, this is a first comparison of
various mathematical methods systematically applied to
the field of gas turbines with comparative findings, appli-
cable to a generic development platform.

*Corresponding author: Beni Cukurel, Turbomachinery and Heat
Transfer Laboratory, Department of Aerospace Engineering, Technion
– Israel Institute of Technology, 3200003 Haifa, Israel,
E-mail: beni@cukurel.org
Michael Palman and Boris Leizeronok, Turbomachinery and Heat
Transfer Laboratory, Department of Aerospace Engineering,
Technion – Israel Institute of Technology, 3200003 Haifa, Israel,
E-mail: p.michael@campus.technion.ac.il (M. Palman),
borisl@technion.ac.il (B. Leizeronok)

Int J Turbo Jet Eng 2021; aop

https://doi.org/10.1515/tjeng-2021-0021
mailto:beni@cukurel.org
mailto:p.michael@campus.technion.ac.il
mailto:borisl@technion.ac.il

Engine numerical model

During jet engine design process, each engine module is
designed,manufactured and tested independently. Similar
approach should be applied in engine simulation frame-
work, where each engine segment can be represented via
independent modules. Such approach creates flexible
toolbox that would be used towards designing different
engine models. This way, a simple turbojet engine is
represented by five major modules - intake, compressor,
combustor, turbine and nozzle. In same framework, con-
version of turbojet to a single-spool turbofan configuration
would only require integrating an additional compressor
module, which will stand for the fan. The two architectures
are schematically described in Figure 1. Each segment will
then evaluate the inlet and outlet conditions and calculate
values for various parameters. The data is shared among
the modules to complete the overall cycle calculation. An
exemplary solver built using this methodology and the
individual component thermodynamics are described in
detail in Ref. [7]. The methodology can be easily expanded
to two- and three-spool machines by introducing addi-
tional turbine modules.

In order to accurately characterize the performance of
different turbomachinery components (fans, compressors
and turbines), themodules can be suppliedwith component
maps that describe the operational range in terms of mass
flow rates, rotational speeds, pressure ratios and effi-
ciencies. In the caseof compressormodule, it is theoretically
possible to have same mass flow rate but different pressure
ratio (choking) or same pressure ratio with different mass
rate on the same speed line. Therefore, it is impractical to
use pressure ratio and mass flow rate to directly read map
data and new auxiliary β-line coordinate should be intro-
duced. β-lines are non-crossing lines that completely cover
the component map and cross each speed line only once.
Thereby, a monotonous injective system of spool speed
and β-line coordinates can be defined. Each set of these
parameters describes a unique performance point on the
component map in terms of efficiency, pressure ratio and
mass flow rate. Detailed procedure of rebuilding maps with
β-lines is described in Ref. [7].

Engine performance simulation

After defining individual components, all engine modules
need to be synchronized to correctly evaluate the integral
engine performance. To satisfy conservation of mass
requirements,mass flow rates throughout the engine should
be matched. Then, mechanical couplings must be added
between relevant components. For example, the high-
pressure compressor and the high-pressure turbine are
coupled by a common shaft. In turbofan configuration, the
fan can be connected to the same shaft directly or via a
gearbox. Alternatively, it can be coupled to a second low-
pressure compressor in twin- or triple-spool configuration.
Finally, correct power balance between all components
should be preserved. For instance, in simple single-spool
architectures, the turbine is the only power source in the
engine. Therefore, in this case, it needs to support both the
engine compressor and any external loads such as fan
and aircraft alternator. Power can be evaluated based on
enthalpy difference through power consuming or gener-
ating component, multiplied by mass flow rate. Proper
mechanical efficiencies of the coupling elements (shaft and
gearbox) should also be taken into account. To illustrate this
concept, power demand for exemplary single-spool turbojet
architecture with an alternator can be calculated from

PWturb = PWcomp + PWalt

ηm
, (1)

(ṁa + ṁf) ⋅ Δhturb ⋅ ηm = ṁa ⋅ Δhcomp + PWalt . (2)

If geared turbofan configuration is considered instead,
the power requirement should be calculated from:

PWturb = PWcomp + PWalt

ηm

+ PWfan

ηm ⋅ ηgb
, (3)

(ṁa + ṁf) ⋅ Δhturb ⋅ ηm = ṁcomp ⋅ Δhcomp + ṁfan

⋅ Δhfan/ηgb + PWalt . (4)

When every component and the necessary couplings
are fully defined, simulation is initialized using known
inlet conditions. One of the established approaches is to

Figure 1: Engine block diagram - (a) turbojet
engine, (b) single-spool turbofan engine.

2 M. Palman et al.: Adaptive GT cycle analysis

select initial operating point guess on the compressormap,
thereby imposing initial β-line coordinate. This β-line
coordinate then becomes the first simulation variable. In
following, the engine combustion chamber can be solved
by estimating combustion temperature, which becomes
the second variable. Now, turbine inlet mass flow rate is
imposed by mass flow conservation, while turbine outlet
massflow rate is calculated based on required turbine load.
The two values must match, and their difference can be
used to define convergence error via two surfaces.

An illustrative example of such surfaces is charted in
Figure 2, where it was calculated for ground conditions at
the design spool speed of a typical turbojet engine, using
representative component maps from open literature [8].
The green surface depicts turbine inlet mass flow rate,
which is imposed by the compressor flow rate and fuel
addition in the combustor. Turbine outlet mass flow rate is
plotted using blue surface. The mass flow difference
between the two surfaces at each combination of variables
is the error surface, labeled as ERROR1.

In following, the turbine outlet mass flow rate should
be matched with the nozzle outlet mass flow rate, imposed
by nozzle pressure ratio. The two mass flow surfaces are
presented in Figure 2. The delta between the two values is
the second convergence error, ERROR2. The problem is
now fully defined by two variables and two error functions,
and cross-section spline between the two error surfaces can
be defined, dashed red line in Figure 3. The solution con-
verges when the errors decay below a predefined conver-
gence criterion. When converged, the spline should cross
zero plane (grey surface in Figure 3) and change sign. This
point, marked with red circle in Figure 3, is the converged
point of the simulation, where both errors are equal to zero.
The module-by-module simulation algorithm is summa-
rized as a block diagram in Figure 4.

Turbofan configuration can be solved in a similar
manner. The simulation starts with the core of the engine,
which is described like a regular turbojet. Additional load
of the fan and changing core inlet conditions are taken into
account. The flow that is not ingested into the core is
evaluated in bypass nozzle.

This straight-forward algorithmhas one prominent flaw
- it is extremely high computational inefficiency. In the
scope of this paper, all mass flow rate surfaces are resolved
with resolution of 40 β-coordinates and temperature steps
of 10 K. Thus, evaluation of each turbojet spool speed
requires more than 2500 calculations. Consequently, a sin-
gle turbojet operating line that consists of 25 spool speeds
takes 62 s to convergeusingMATLABonamodern computer
equipped with Intel Core i7-8700 CPU and 32 GB DDR4
2667 MHz RAM. Considering that turbojet has a single
control variable (fuel flow rate, which imposes the spool

Figure 2: Turbine inlet and outlet (left), nozzle inlet and outlet (right) mass flow rates.

Figure 3: Two error surfaces and the converged point of the
simulation algorithm.

M. Palman et al.: Adaptive GT cycle analysis 3

speed), introduction of additional control parameterswould
exponentially increase computational complexity, resulting
in simulation times beyond reasonable. Therefore, in order
to simulate future adaptive cycleswith numerous degrees of
freedom, present approach is impractical and different path
should be adopted.

Surrogate and particle swarm optimization
model

In an attempt to resolve the high computation time prob-
lem, one of the logical approaches is to convert the simu-
lation into an optimization problem. Then, the goal of the
problem becomes to find the minimum in multidimen-
sional error surface, which is defined as the Euclidian norm
of the two error functions. Minimal error point is consid-
ered converged if this vertex is below the predefined
allowable error. An exemplary error surface is depicted in
Figure 5, with the solution marked with red circle. The
advantage of this approach is that it significantly simplifies
simulation programming as only the variables’ ranges and
engine error function need to be prepared. The algorithmof
this approach is described in Figure 6.

Additional benefit of this method lies in the fact that
many sub-routines already exist for various optimization
schemes. For example, one of the most advanced and

popular schemes, known as the "Surrogate Optimization",
has premade implementations in MATLAB, C++, Python
and other programming environments. This method,
described in details in Refs. [9–12], has two major phases -
creation of a surrogate surface and evaluation of the built
surface minimum. At first, the algorithm takes samples of
an error surface at randompointswithin the bounds. Based
on this sampling, and using interpolation, it creates sur-
rogate error surface. Then, the algorithm searches for a
minimum of the created surface by sampling several
thousand random points within the bounds. Next, error
values on the error surface are calculated at the same
points. Based on the differences between the surrogate and
error surfaces, best points are chosen to iteratively update
the surrogate surface. The iterations are stopped when
the found minimum falls into prescribed allowable error
bounds.

Using MATLAB, implementation of this function in the
optimization problem resulted in calculation time of 47.1 s.
To speed up calculations, parallel computing can be used to
divide a given job to several data packages and solve them
simultaneously using different processor cores. However, in
the present case, it increased the simulation time to 79 s as
the problem division and preparation of data packages
for each core also consumes significant time. Therefore,
parallelization remains beneficial only in higher-dimension
problems.

In a bid to further reduce optimization time, less
numerically demanding particle swarm optimization can
be considered. Particle swarm is a population-based
algorithm, described in details in Refs. [13–15]. Calcula-
tion starts with spread of “particles” over the error surface
inside prescribed bounds. Then error is evaluated for each
particle and they get prescribed velocity based on the

Figure 4: Module-by-module simulation
approach.

Figure 5: Error norm in an optimization problem. Figure 6: Optimization problem algorithm.

4 M. Palman et al.: Adaptive GT cycle analysis

distance travelled at each iteration. After movement on the
error surface each particle is re-evaluated. The particles are
attracted to some degree to the best location they have
found individually and to the best location found by any
member of the swarm. Using MATLAB, implementation of
this function in the optimization problem resulted in
calculation time of 21.6 s. Similar to first optimization
attempt, parallel computing resulted in calculation time
increase to 34.1 s.

Newton-Raphson algorithm

Although optimization approach significantly reduced
individual calculation time, introduction of additional
engine control parameters would still result in significant
computational load. Therefore, instead of solving the
engine model as an optimization problem, an attempt can
be made to improve the solution efficiency by modifying
and optimizing the solver for root-finding formulation.
Instead of resorting to grid search over entire error sur-
faces, thereby obtaining zero-point through numerous
calculations, several efficient numerical methods can be
implemented.

One of the most efficient ways to numerically find the
function root is the Newton - Raphson (NR) method [16]. It
is a powerful tool that solves equations based on the idea of
linear approximation. This approach relies on the notion
that any function can be rewritten using Taylor series
expansion:

f(x) = ∑
∞

n=0

f (n)(x0)
n!

(x − x0)n. (5)

If x0 is an estimated root of the function, shortening
the series to first two significant terms results in:

f(x) ≈ f(x0) + f ′(x0)(x − x0) = 0. (6)

This way, the root can be obtained using an iterative
procedure

x(i+1) = x(i) − f(x(i))
f ′(x(i)) , (7)

where the function derivative can be found using forward-
stepping finite difference formula. Multivariable NR
method is direct extension of the single variable formula-
tion. This time, it can be used to solve system of equations
that has the form of

f1(x) = 0
⋮
fn(x) = 0

, (8)

where x is the variables vector x = [x1,…, xn]. In this
formulation, partial function derivatives take the form of
Jacobian matrix:

J =

⎡⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

…
∂f1
∂xn

⋮ ⋱ ⋮
∂fn
∂x1

…
∂fn
∂xn

⎤⎥⎥⎥⎥⎥⎥⎦
. (9)

Iterative procedure for a system of multivariable
nonlinear equations is represented by

x(i+1) = x(i) − J−1(x(i)) ⋅ f(x(i)). (10)

The advantages of the NR method are its fast conver-
gence and simplicity of implementation. However, this
method has several disadvantages, one of which is the
absence of stopping criteria in cases with no solution.
Therefore, to prevent infinite loop, existence of a solution
in computational domain should be confirmed before
execution of this technique.

Computational domain

Computational domain can be defined by subtraction be-
tween the two error surfaces. As the spool speed decreases,
nozzle inlet pressure drops. If it reaches sub-atmospheric
values, solution no longer exists, limiting the range of
feasible computations. The possible solutions range is
further limited by β-coordinate, which not only further af-
fects nozzle pressure, but also imposesminimal combustor
inlet temperature. The aggregate influence of the two ef-
fects results in a shift of computational domain towards
top-right corner, Figure 7.

The suggested process of finding the computational
domain boundaries is illustrated in Figure 8 (left) for
representative flight conditions of Mach 0.3 and altitude of
5000 m, and relative spool speed of 0.38. At first, the
theoretical area of all β-lines and temperatures is truncated
to only include possible turbine inlet temperatures for
given spool speed. Then, the remaining region is covered
by fanning auxiliary beams, originating from bottom-left
corner, Figure 8 (left). Along each beam, interactive prob-
ing is used to identify the computational field’s bound-
aries, magenta marks in Figure 8 (left). As each beam can
only cross the boundary once or twice at best, the crossings
provide lower and upper bounds of the computational
domain. Together, the found points form the computa-
tional polygon of the simulation.

In the exemplary case of Figure 8 (left), 13 beams are
crossing the region and the polygon consists of 26 vertices.

M. Palman et al.: Adaptive GT cycle analysis 5

Figure 7: Error surface and computational domain with respect to changes in spool speed for representative flight conditions of Mach 0.3 and
altitude of 5000 m.

Figure 8: Example of computational domain
polygon identification (left) and edges of
the zero-plane spline (right) at M = 0.3,
H = 5000 m, N = 0.38.

6 M. Palman et al.: Adaptive GT cycle analysis

If all of these points have the same sign, the two error
surfaces do not have a crossing in the computational
domain and the solution does not exist, allowing the al-
gorithm to quickly shift to next spool speed. Else, the edges
of the spline that lies on the zero plane can be identified,
Figure 8 (right), defining the crossing between the two error
surfaces. Following same logic, if the sign of the two end
points is the same, there is no solution. Therefore, only if
the curve edges have opposite signs, solution exists and it
must lie within the computational polygon.

As present work relies on iterative solvers, this check
negates the risk of running into infinite iteration loop,
which is inherent in initial condition-sensitive iterative
solvers. This boundary-definingmethod is also useful in the
frameworks of engine control systems and operational en-
velope definitions, where the boundaries of engine opera-
tion are of larger interest rather than its actual performance.

After identifying the computational polygon and con-
firming solution existence, NRmethod can be implemented
in confidence. Center of the field, red circle in Figure 8 (left),
is a good first guess for initializing the simulation. The
complete algorithm is described in Figure 9. Implementa-
tion of this algorithm in MATLAB yields 4.3 s simulation
time for single-spool turbojet.

Broyden’s method

One of the numerical disadvantages of the NR method, is
the inherent requirement to reevaluate the Jacobianmatrix

during each iteration. For systems with n variables, Jaco-

bian matrix has the size of n × n. Therefore, n2 derivatives
are needed to reconstruct the matrix during each iteration.
As the derivatives are calculated using finite differences,

Jacobian matrix construction can entail up to 2n2 error
function evaluations. The actual number of calculations
will be somewhat lower, as engine model provides two
errors simultaneously and the previously calculated point
can also be retained. To ease this computational burden, it
is possible to implement a quasi-Newton technique. One of
the most successful and commonly used quasi-Newton
methods was developed by Broyden [17]. This approach
requires Jacobian matrix calculation only once when
the iterative procedure is launched. Then, in the process of
finding the root for a given problem, Jacobian matrix
is approximated from previous iteration, significantly
reducing the number of computations. The iterative pro-
cedure for Broyden’s method is identical to that used in NR
method, with the only difference of using approximation
matrix B instead of Jacobian matrix:

x(i+1) = x(i) − B−1(x(i)) ⋅ f(x(i)). (11)

The approximation matrix is defined as:

B(i) = B(i−1) + y(i) − B(i−1)s(i)

‖s(i)‖22
(s(i))T , (12)

where

y(i) = f (X(i)) − f (X(i−1)),  s(i) = X(i) − X(i−1). (13)

Implementation of Broyden’s method in MATLAB for
same engine architecture further reduced simulation time
to 4.09 s.

Grid resolution

Beyond the efforts to reduce calculation times for root-
finding problem, major part of the computational burden

Figure 9: NR simulation algorithm for turbojet engine.

Figure 10: Computational polygon resolution
comparison. Polygon at N = 038 (left) and
operating lines (right) at M = 0.3,
h = 5000 m.

M. Palman et al.: Adaptive GT cycle analysis 7

lies on solution existence validation. The number of cal-
culations that are used to identify computational is directly
proportional to resolution of auxiliary beams. Therefore,
coarse resolution can significantly decrease simulation
time, however it should be approached with caution as
insufficient beam number would be detrimental to simu-
lation performance. Figure 10 (left) presents comparison of
found computational field for grid resolutions of 20, ten
and five lines. It can be seen that while reduction to 10 lines
still results in reasonable polygon shape, highly inaccurate
shape can be observed after further reduction to five line
resolution. This is reflected in engine simulation perfor-
mance. When comparing operating line on compressor
map as found by the simulation for different auxiliary
beam resolution, Figure 10 (right), ten-line values correlate
well to higher resolution data, whereas there are visible
breakdowns in the five-line simulation that couldn’t
converge in several cases.

Muller’s method

Additional approach to reduce calculation time during
solution existence validation can be by focusing on
improving the edge search for cross section line. Instead of
using simple bisection method, which is known to be one
of the less efficient root finding methods, a faster conver-
gence technique can be implemented. One of themost agile
methodologies is Muller’s Method [18]. This algorithm
starts with an initial guess of three points. Then, parabola
is constructed through these locations. One of the parabola
roots becomes the next root estimation. In following, value
of the error spline at the new root is used to construct new
parabola. The procedure is repeated until convergence.
Overall, the iteration procedure is described as

X(i+1) = X(i) − 2C

B ±
̅̅̅̅̅̅̅̅
B2 − 4AC

√ , (14)

where A, B and C are the parabola coefficients that can be
calculated according to

A = qF(X(i)) − q(1 + q)F(X(i−1)) + q2F(X(i−2)),
B = (2q + 1)F(X(i)) − (1 + q)2F(X(i−1)) + q2F(X(i−2)),

C = (1 + q)F(X(i)), (15)

q = X(i) − X(i−1)

X(i−1) − X(i−2) . (16)

Clear advantage of Mueller’s method can be demon-
strated using exemplary case study of Figure 8 (right).
Figure 11 describes iterative procedure for the upper and
lower spline edges search along polygon boundary, using
both bisection and Muller’s methods. In both cases,
Muller’s method is significantly advantageous to classical
bisection approach. During upper edge search, Muller’s
algorithm converged within three steps, whereas bisection
method required 14 iterations. Same tendencies are present
in lower edge calculation, where it took Muller’s technique
only four iterations to identify the edge compared to 14
steps of bisection convergence.

Optimized algorithm validation

The proposed numerical approaches can be implemented
into optimized simulation tool, which can be validated
against commercial GasTurb13 software. Same single-
spool turbojet engine is modeled in GasTurb13 and the
results of the commercial and in-house codes are
compared in Figures 12 and 13 in terms of operating line,
thrust rating and fuel consumption respectively. The
findings are in close agreement with 1.35% average devi-
ation in operating line, 1.84% average deviation in thrust
rating and 0.64% average deviation in fuel consumption.
This deviation magnitude suggests that the algorithm is

Figure 11: Search for the upper (left) and
lower (right) spline edge (M = 0.3,
H = 5000 m, N = 0.38).

8 M. Palman et al.: Adaptive GT cycle analysis

capable of accurately resolving the cycle performance.
Overall, the suggested simulation approach provides
reliable outputs and can be used to outline the benefits of
each numerical method in significantly more complex
cycles.

Algorithms comparison in adaptive
cycle simulation

As present effort focuses on exploring the paths towards
high-speed modular advanced cycle simulation, having
already compared the performance of the different
methods in single-spool turbojet scenario, same methods
must be compared in higher order models. One of such
previously conceptualized architectures is an adaptive
cycle turbofan with variable bypass and gearbox ratio.
Compared to conventional turbojet, which can only variate
its fuel flow rate via throttle, this design, described in detail

in Ref. [6], has two additional control parameters (gearbox
ratio and variable bypass nozzle).

Towards results consistency, all comparisons are done
for same flight conditions using single CPU core on same
hardware and software. The NR, Broyden, NR coupled with
Muller and Broyden coupled with Muller approaches are
evaluated for both engine configurations using 10- and
20-line auxiliary beams grid. The simulation times for all
cases are summarized in Table 1.

It is interesting to note that although Broyden’s
method is known to have slower convergence rate then NR,
it achieves lower computational load due to estimation of
Jacobian matrix. Exemplary solution path for both Broy-
den’s and NR algorithms is presented in Figure 14 using the
previously discussed case study. In this case, NR algorithm
converged in four iterations. In comparison, although
Broyden’s method converged in 11 steps, due to Jacobian
matrix evaluation only in the starting path point, reduced
number of error evaluations directly translates to
decreased simulation time in both engine configurations.
As expected, further time reduction is achieved by
reducing auxiliary grid resolution and implementing
Muller’s method during solution existence validation.

Figure 12: GasTurb13 and in-house code operating line comparison.

Figure 13: GasTurb13 and in-house code
thrust rating (left) and fuel consumption
(right) comparison.

Table : Root finding approaches simulation times (in CPU time
units).

Turbojet Adaptive Cycle
Turbofan

 lines
grid

Newton-Raphson . s . min
Broyden . s . min
Newton-Raphson &
Muller

. s . min

Broyden & Muller . s . min
 lines
grid

Newton-Raphson . s . min
Broyden . s . min
Newton-Raphson &
Muller

. s . min

Broyden & Muller . s . min

M. Palman et al.: Adaptive GT cycle analysis 9

To further highlight the difference between NR and
Broyden methods, additional complexity can be added to
engine architecture. For example, addition of recuperation
to the cycle will impose another computational variable
into the algorithm. A simplified heat exchanger model can
be added according to Ref. [19].

Based on recuperator design condition, off-design ef-
ficiency and pressure losses on the cold and the hot sides
can be evaluated. Efficiency is defined as

η = 1 − ṁ
ṁds

(1 − ηds), (17)

cold side pressure loss is evaluated from

Pin − Pout

Pin
= (Pin − Pout

Pin
)

ds

⎛⎝ṁin
Pin
⎞⎠2

T1.55
out

T0.55
in

⎛⎝ṁin
Pin
⎞⎠2

ds

T1.55
out, ds

T0.55
in, ds

, (18)

and hot side pressure loss is calculated via

Pin − Pout

Pin
= (Pin − Pout

Pin
)

ds

ṁ2
inTin

(ṁ2
inTin)

ds

. (19)

In recuperated engine cycle, combustor inlet temper-
ature, which is the heat exchanger cold side outlet, is the
new simulation variable. Evaluated off-design efficiency
provides hot side inlet temperature directly from heat
exchanger efficiency definition

η = Tcold, out − Tcold, in

Thot, in − Tcold, in
. (20)

After solving the combustion chamber and the turbine
modules, iterated recuperator efficiency is compared to
initial estimate. The difference between the two values is
additional simulation error. Thus, engine model formula-
tion Should now be described by three variables and three
error functions. In this case, the size of Jacobian matrix
becomes 3 × 3, significantly increasing the number of error
function evaluations.

This effect of adding heat exchanger module is eval-
uated in both engine configurations. Design point effi-
ciency of 80%with 3% pressure drop on both cold and hot
side is assumed. The recuperated cycles are evaluated only
using 10-line auxiliary beams grid. Outcome of this inves-
tigation is summarized in Table 2.

It can be observed that despite increased size of the
Jacobian matrix, due to pressure losses in the heat
exchanger, the simulation times are close to non-
recuperated engines. As pressure loss is directly propor-
tional to engine flow rate, higher spool speeds impose
higher pressure loss. This phenomenon significantly re-
duces the number of converged operating points, with
unsuitable points filtered out by solution existence check.
However, regardless of this effect, an increasing gap be-
tween NR and Broyden’s methods can still be registered.

To highlight the usefulness of this simulation
approach, preliminary analysis of conceptual micro-
turbojet to micro-turbofan conversion project can be
considered. Using the same engine core, this would require
increased power extraction from the turbine to support the
fan stage. In this scenario, increased core inlet pressure
would not only allow higher turbine power, but would also
result in higher thermodynamic cycle efficiency. Although
large-scale turbofan engines typically have booster stages
to achieve this effect, a different concept can be adopted in
this hypothetical micro gas turbine project, where small
spatial scales could potentially prevent booster installa-
tion. Instead, hub loaded fan with higher hub pressure
ratio can perform as a booster stage. In this atypical case,
the fan hub and tip regions will have separate fan maps,

Figure 14: Converged solution paths of Broyden’s and NR methods
(M = 0.3, h = 5000 m, N = 0.38).

Table : Simulation time of recuperated engine configurations (in
CPU time units).

Turbojet with
HEX

Adaptive Cycle Turbofan
with HEX

Newton-Raphson . s . min
Broyden . s . min
Newton-Raphson &
Muller

. s . min

Broyden & Muller . s  min

10 M. Palman et al.: Adaptive GT cycle analysis

which need to be individually accounted by separate sets
of β-coordinates, leading to increased simulation times.

To emphasize the differences between the solvers in
this case, they can be evaluated in realistic mission design
space. In this case, the enginemodel needs to be solved for
ranges of Mach numbers and altitudes. A realistic flight
envelope covers Mach range of 0–0.9 and altitude range of
0–9 km and can be resolved with Mach number steps of 0.1
and altitude steps of 1 km. Thus, the design space would
result in 81 distinct flight conditions. Knowing the repre-
sentative solution time for each flight condition allows
evaluation of simulation time for the complete envelope.
The results for each solver are summarized in Table 3.
Clearly, in this case, simulation time is of tremendous
importance and optimized simulation methodology be-
comes increasingly crucial tool.

It is important to note that although all cases were
compared using MATLAB towards simplicity and faster
implementation, it is an interpretive programing language,
which is relatively slow. For example, it is known to be up
to 11 times slower than C++ programing language [20, 21].
Thus, using compiled programming language and further
optimizing the code will lead to significantly reduced
simulation times akin to those, which are typical in various
commercial cycle simulation codes. Regardless, the bene-
fits of the presented methods will also scale accordingly.

Summary and conclusions

The present paper focuses on comparison of various nu-
merical approaches in the framework of simulation
development for increasingly complex engine models.
Starting with outlining the numerical challenges of typical
modular engine simulation tool, several paths are sug-
gested to improve computation times for engine operating
point. At first, the engine model is solved as an optimiza-
tion problem using surrogate and particle swarm ap-
proaches. Although this formulation reduces simulation

time, the outcomes are insignificant on the grandscale.
Moreover, parallelization attempts result in higher times
when compared to single core formulation.

In following, several suggestions are made to enhance
the classical solution procedure. NR algorithm is imple-
mented to shorten the root finding time. To further reduce
computational load, a solution existence check method-
ology is implemented and NR is replaced with significantly
faster Broyden’s procedure. Additional improvement is
done by reducing auxiliary grid resolution and applying
Muller’s technique during computational domain identifi-
cation phase. The combined effect of Muller’s and Broy-
den’s techniques reduces the overall flight envelope
simulation time by 3.3, 7.3 and 12.3% when compared to
combination of Newton-Raphson and Muller’s methods,
only Broyden’s method and only Newton-Raphson
method, respectively.

The impact of sequential code improvement is high-
lighted in representative single-spool turbojet and adap-
tive cycle turbofan configurations. As adaptive cycle
engine has additional gear and bypass ratio control pa-
rameters when compared to the turbojet architecture,
which can only variate spool speed, the increased model
complexity results in significantly increased simulation
times. The engine model is then further expanded to
include recuperation. Although addition of heat exchanger
imposes another degree of freedom, the pressure losses
reduce the number of converged engine operating points.
Therefore, due to solution existence validation procedure,
which filters un-convergable points prior to simulation
start, the computation time remains unchanged. Finally,
micro-turbofan with hub loaded fan is considered and is
used to highlight the code differences in realistic design
space.

According to the best knowledge, the present work is
the first quantitative comparison of individual solvers and
their cumulative effect, particularly geared towards
advanced gas turbine cycle simulations. It is the hope of
the authors that the findings of this study would help
establish the path towards future optimized simulation
codes, regardless of the selected implementation
framework.

Author contributions: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: The present research effort was partially
supported by the U.S. Office of Naval Research Global under
award number N62909-17-1-217; Peter Munk Research

Table : Adaptive cycle turbofan with booster flight envelope
simulation.

Adaptive Cycle Turbofan
with Booster

Flight Envelope
Simulation

Newton-Raphson . h . day
Broyden . h . day
Newton-Raphson
& Muller

. h . day

Broyden & Muller . h . day

M. Palman et al.: Adaptive GT cycle analysis 11

Institute under award number 110101; and the Bernard M.
Gordon Center for Systems Engineering under award
number 1017930. Also, supported by Minerva Research
Center (Max Planck Society Contract No. AZ5746940764).
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

1. WILLIAM K. Pratt and Whitney receives $437M for continued
adaptive engine development. Available from: https://www.sae.
org/news/2018/09/pratt–whitney-receives-usd437m-for-
continued-adaptive-engine-development.

2. Rolls-Royce. Rolls-Royce North American Technologies, Inc.
Selected by U.S. Air Force to complete ADVENT research
demonstrator Program. Available from: http://www.defense-
aerospace.com/articles-view/release/3/109107/rolls_royce-
selected-for-advent-demonstrator.html.

3. Kowalski M. Adaptive jet engines. J KONES Powertrain Transport
2011;18.

4. Patel HR, Wilson DR. Parametric cycle analysis of adaptive. AIAA
Propul Energy 2018. 2018 Joint Propulsion Conference, July 9-11,
2018, Cincinnati, Ohio, US. https://doi.org/10.2514/6.2018-4521.

5. Visser MOWPJ, Kogenhop O. A generic approach for gas turbine
adaptive modeling. J Eng Gas Turbines Power 2006;128:13–19.

6. Palman M, Leizeronok B, Cukurel B. Mission analysis and
operational optimizationof adaptive cyclemicroturbofan engine in
surveillance and firefighting scenarios. J Eng Gas Turbines Power
2019;141. https://doi.org/10.1115/1.4040734.

7. Kadosh K Cukurel B. Micro-turbojet to turbofan conversion via
continuously variable transmission: thermodynamic performance
study. ASME J Eng Gas Turbines Power 2017;139. https://doi.org/
10.1115/1.4034262.

8. Lichtsinder M, Levy Y. Jet engine model for control and real-time
simulations. J Eng Gas Turbines Power 2006;128:745–53.

9. Powell MJD. The theory of radial basis function approximation in
1990. In: Light WA, editor. Advances in numerical analysis,
volume 2, wavelets, subdivision algorithms, and radial basis
functions. Oxford: Clarendon Press; 1992:105–210 pp.

10. Regis RG, Shoemaker CA. A stochastic radial basis function
method for the global optimization of expensive functions. Inf J
Comput 2007;19:497–509.

11. Wang Y, Shoemaker CA. A general stochastic algorithm
framework for minimizing expensive black box objective
functions based on surrogate models and sensitivity analysis.
2014. arXiv:1410.6271v1. Available from: https://arxiv.org/pdf/
1410.6271.

12. Gutmann H-M. A radial basis function method for global
optimization. J Global Optim 2001;19:201–27.

13. Kennedy J, Eberhart R. Particle swarm optimization. In:
Proceedings of the IEEE International Conference on Neural
Networks. 1995:1942–5.

14. Mezura-Montes E, Coello CA. Constraint-handling in nature-
inspirednumerical optimization: past, present and future. Swarm
and Evolutionary Computation 2011;1:173–94.

15. Pedersen ME. Good parameters for particle swarm optimization.
Luxembourg City, Luxembourg: Hvass Laboratories; 2010.

16. Ryaben’kii VS, v Tsynkov S. A theoretical introduction to
numerical analysis. BocaRaton, Florida, US: CRCPress; 2006:243
p. ISBN 9781584886075.

17. Broyden CG. A class of methods for solving nonlinear
simultaneous equations math. Math Comput 1965;19:577–93.

18. Muller DE. A method for solving algebraic equations using an
automatic computer. MTAC; 1956. p. 208–15. https://doi.org/10.
1090/s0025-5718-1956-0083822-0.

19. Walsh PP, Fletcher P. Gas turbine performance. Hoboken, New
Jersey, US: Blackwell Publishing; 2004.

20. Gouy I. The computer language benchmarks game. Available
from: https://benchmarksgame-team.pages.debian.net/
benchmarksgame.

21. AruobaSB, Fernansez-Villaverde J. A comparison of programming
languages in macroeconomics. J Econ Dyn Control 2015;58:
265–73.

12 M. Palman et al.: Adaptive GT cycle analysis

https://www.sae.org/news/2018/09/pratt--whitney-receives-usd437m-for-continued-adaptive-engine-development
https://www.sae.org/news/2018/09/pratt--whitney-receives-usd437m-for-continued-adaptive-engine-development
https://www.sae.org/news/2018/09/pratt--whitney-receives-usd437m-for-continued-adaptive-engine-development
http://www.defense-aerospace.com/articles-view/release/3/109107/rolls_royce-selected-for-advent-demonstrator.html
http://www.defense-aerospace.com/articles-view/release/3/109107/rolls_royce-selected-for-advent-demonstrator.html
http://www.defense-aerospace.com/articles-view/release/3/109107/rolls_royce-selected-for-advent-demonstrator.html
https://doi.org/10.2514/6.2018-4521
https://doi.org/10.1115/1.4040734
https://doi.org/10.1115/1.4034262
https://doi.org/10.1115/1.4034262
https://arxiv.org/pdf/1410.6271
https://arxiv.org/pdf/1410.6271
https://doi.org/10.1090/s0025-5718-1956-0083822-0
https://doi.org/10.1090/s0025-5718-1956-0083822-0
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame

	Comparative study of numerical approaches to adaptive gas turbine cycle analysis
	Introduction
	Motivation

	Engine numerical model
	Engine performance simulation
	Surrogate and particle swarm optimization model
	Newton-Raphson algorithm
	Computational domain
	Broyden’s method
	Grid resolution
	Muller’s method
	Optimized algorithm validation

	Algorithms comparison in adaptive cycle simulation
	Summary and conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

