Embedded Flow Control for High Work / Low Reynolds Number Turbines

Turbomachinery and Heat Transfer Laboratory

Acar Celik, Assoc. Prof. Beni Cukurel

Technion – Israel Institute of Technology

This work is the result of a joint effort with other members of the research group: Tapish Agarwal, Abhijit Mitra

MOTIVATION

- > Engines for future platforms require significantly increased performance
- > Turbine airfoils are known to suffer severe performance degradation at off-design conditions
- > Flow control technologies can mitigate performance degradation if implemented in practical designs
- > The effort could yield robust on- and off- design performance for future engines

PROJECT OBJECTIVES

- > Design high work / low Reynolds turbine components that are relevant to future engine cycles
- > Develop novel flow control strategies that are suitable for embedding in rotating turbomachinery
- Understand the fundamental physics of acoustic flow control

- \succ St~ \sqrt{Re} indicates KH
- Excitation causes accumulation and shedding of coherent vortices

FUTURE WORK

- > Closer understanding to interaction of acoustic waves and shear layer
- > Investigation into role of attached boundary layer in the control

ACCUMULATION OF COHERENT VORTICES

FFT FOR UN-EXCITED KH FREQUENCY

EXCITED VELOCITY FIELD

Water tunnel PIV measurements

> Schlieren and PIV experiments of turbine blades in transonic linear

